
  

I’m High
”by Nicolas A. Economou”

h



  

Who am I?

● Exploit writer & security researcher at ”BFS LABS” 
(Blue Frost Security)

● Specialized on Windows exploitation

● Working on security since 2005

● Many talks, advisories, blogposts, tools, etc



  

Why am I High?



  

that’s why...



  

how it started?



  

how it started?

● I was reversing some Windows services 
(CSRSS.EXE)

● Working on manifests files (“.manifest”)

● Trying to understand how they work



  

how it started?

● I saw the presentation "The Print Spooler Bug 
that Wasn't" at ’OffensiveCon 2023’

● Given by “James Farshaw” & ”Maddie Stone” 
(Google Project Zero)

● Talk about a 0-day intercepted in the wild (CVE-
2022-41073)



  

how it started?

● The exploit used a manifest file to get execution

● The exploitation was done from Medium 
Integrity Level

● The exploit remapped the ’C:’ drive (what???)



  

Remapping ‘C:’ drive



  

Remapping C: drive

● It consists on changing the base directory of ‘C:’

● It can be done by using a symbolic link

● E.g: “c:” → “c:\users\public” 

– New “system32”: “c:\windows\system32” → “c:\users\
public\windows\system32”



  

Remapping C: drive

● The function to do that is “DefineDosDevice”

● It can remap almost any drive from Medium IL

● Except the ones that were previously mapped...



  

Remapping C: drive

● A low level function exists which allows that

● The NtCreateSymbolicLinkObject function

● It was used by the exploit in the wild!



  

Remapping C: drive

● It only affects the current user

● Services which impersonate the current user 
are affected

● The Windows kernel is affected in some 
syscalls



  

Bug found



  

Report to MSRC

● It was reported to Microsoft on August 25th

● MSRC Case 81895

● Still unfixed (0-day)...



  

Error found



  

At the beginning...



  

Type of bug

● It’s a DLL hijacking bug

● It allows us to inject DLL’s in some privileged 
processes

● The user loader is affected



  

Bug benefits

● Used to escalate privileges (aka EoP) from 
Medium IL

● Get code execution in High integrity level (or 
kind of)

● Deterministic exploitation (always works)



  

Bug requirements

● The affected executables have an embedded 
manifest

● Tags required: level="asInvoker" + uiAccess="true"

● ”<autoElevate>” tag is not required



  

Embedded manifest example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<assemblyIdentity
    version="5.1.0.0"
    processorArchitecture="amd64"
    name="Test"
    type="win32"
/>

<description>Test description</description>

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
  <security>
        <requestedPrivileges>
            <requestedExecutionLevel
                level="asInvoker"
                uiAccess="true"
            />
        </requestedPrivileges>
    </security>
</trustInfo>
</assembly>



  

Vulnerable versions

● Vulnerable Windows versions:
- Windows 11 (23H2 - release 25977 – Canary Channel)

- Windows 11 (22H2 and previous)

- Windows 10 (22H2 and previous)

- Windows Servers (not tested, probably vulnerable)

- Windows 8.1 (not tested, probably vulnerable)

- Windows 7 (vulnerable)



  

Vulnerable program list

● Some programs on “Windows 11” 22H2:
- ctfmon.exe, EaseOfAccessDialog.exe

- EoAExperiences.exe, Magnify.exe

- Narrator.exe, osk.exe

- psr.exe, rdpinput.exe

- rdpshell.exe, VoiceAccess.exe

- msra.exe (it has “AutoElevate” tag)



  

Root cause

● Process groups and privileges are identical to 
regular processes (affected by remapping)

● Only Mandatory Label is different (High)

● Searchable DLLs are only affected



  

Loader path

● Loader module path:

→ ...
  → ntdll!LdrpInitializeProcess

    → ntdll!LdrpDrainWorkQueue

      → ntdll!LdrpProcessWork

        → ntdll!LdrpMapDllSearchPath

          → ntdll!LdrpMapDllNtFileName



  

Real life attack scenario

2.sandbox escape 
exploit

(Low to Medium)

3.user/kernel exp
(Medium to High)

1.remote exploit
(Chrome sbx)

Admin/SYSTEM



  

Exploitation
“part 1”



  

Exploitation – part 1

● Target process: “ctfmon.exe”

● Only a DLL is required ("MsCtfMonitor.dll")

● Only one exported function is required 
("DoMsCtfMonitor")



  

Exploitation – part 1

● Create fake directory ”.\windows\system32”

● Copy fake "MsCtfMonitor.dll" there

● Hooks “ShellExecute” function to intercept the 
process creation



  

Exploitation – part 1 - steps

● Execute “ctfmon.exe” via “ShellExecute”

● Remap “C:” in the hook (change the system 
directory when process is still suspended) 

● Resume the process creation

● Code execution is achieved!



  

Demo 1



  

Exploitation
“part 2 – the chain”



  

Exploitation – part 2

● ”””HIGH””” IL has been obtained

● The process still have restrictions (not real 
“Admin” privileges)

● It’s necessary to chain the attack to get full 
privileges



  

Exploitation – part 2

● The pwned process token has 
SECURITY_MANDATORY_HIGH_RID (0x3000) 

● This privilege could be useful to elevate

● A possible attack vector is to register an ACTX 
for a EXE/DLL (aka cache poisoning!)



  

Exploitation – part 2

● At some patch level of “Win11” 22H2, an IL check 
was added for ACTX registering 

● It was after a 0-day in the wild (CVEs mentioned 
on the ZDI blogpost – “Activation Context Cache 
Poisoning – CSRSS ...”)

● Elevated processes only use now ACTXs 
registered with the same IL 



  

Exploitation – part 2

-sxssrv!BaseSrvSxsCreateActivationContextFromStructEx

(new code)

b



  

Some RIDs

● SECURITY_MANDATORY_LOW (0x1000)
– Sandboxed processes (e.g: “Chrome” renderer)

● SECURITY_MANDATORY_MEDIUM (0x2000)
– Most programs (e.g: “notepad.exe”, “cmd.exe”, etc)



  

Some RIDs

● SECURITY_MANDATORY_HIGH (0x3000)
– “Run as Administrator”, some privileged programs

● SECURITY_MANDATORY_SYSTEM (0x4000)
– Services



  

Cache poisoning scenarios

● E.g 1: if “chrome.exe” (renderer) registers an 
ACTX for “notepad.exe”, it won’t be used 
(0x1000 vs 0x2000)

● E.g 2: if “notepad.exe” registers an ACTX for 
“calc.exe”, it’ll be used (0x2000 vs 0x2000)



  

Cache poisoning scenarios

● E.g 3: if “notepad.exe” registers an ACTX for 
“tcmsetup.exe”, it won’t be used (0x2000 vs 
0x3000)

● E.g 4: if “ctfmon.exe” registers an ACTX for 
“tcmsetup.exe”, it’ll be used (0x3000 vs 0x3000)



  

Exploitation – part 2

● Target process: “tcmsetup.exe” (‘Telephony 
Client Setup Help’)

● Run as real High IL (Administrator)

● Easy to get SYSTEM privileges from it (usually 
obtained by kernel exploits)



  

Exploitation – part 2

● Target DLL: “tapi32.dll” (register an ACTX)

● This DLL has an embedded manifest

● DLL hijacked: “imm32.dll” (where code 
execution is achieved)



  

Steps

● A real “windows\system32” subdirectory is 
required (for registering the ACTX)

● E.g: “c:\windows\system32\tasks” (because it’s 
writable)

● Copy custom “tapi32.manifest” and fake 
“imm32.dll” there



  

TAPI32 manifest

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- Copyright (c) Microsoft Corporation →

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" 
manifestVersion="1.0">
<assemblyIdentity
    version="1.0.0.0"
    name="TAPI32"
    processorArchitecture="amd64"
    type="win32"
    language="tasks"
/>

<file name="imm32.dll"/>
</assembly>



  

Registering ACTXs

● The “CreateActCtx()” function is used to register 
ACTXs (better use low level ;-)) 

””””
ACTCTXA actx = {0};
actx.cbSize = sizeof (actx);
actx.lpSource = "test.manifest";

CreateActCtxA (&actx);
””””



  

Final steps

● Register the ACTX for “tapi32.dll” (from 
“ctfmon.exe”)

● Execute “tcmsetup.exe”

● “tcmsetup.exe” → “tapi32.dll” → “imm32.dll”

●  Code execution achieved!



  

Bug found



  

Demo 2



  

Bug limitations



  

Bug limitations

● If the current user is member of the 
“Administrators” group (the default one)
– SECURITY_MANDATORY_HIGH_RID (0x3000) is 

obtained

● If the current user is member of the “Users” 
group
– SECURITY_MANDATORY_MEDIUM_RID+  

(0x2010) is obtained



  

Conclusions



  

Conclusions

● All Windows versions are vulnerable!

● It could be thought of like a UAC bypass

● System drives shouldn’t be remapped from MIL



  

Thanks!
@NicoEconomou

h


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

