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Who am I?

● Exploit writer & security researcher at ”BFS LABS” 
(Blue Frost Security)

● Specialized on Windows exploitation

● Working on security since 2005

● Many talks, advisories, blogposts, tools, etc



  

Why am I High?



  

that’s why...



  

how it started?



  

how it started?

● I was reversing some Windows services 
(CSRSS.EXE)

● Working on manifests files (“.manifest”)

● Trying to understand how they work



  

how it started?

● I saw the presentation "The Print Spooler Bug 
that Wasn't" at ’OffensiveCon 2023’

● Given by “James Farshaw” & ”Maddie Stone” 
(Google Project Zero)

● Talk about a 0-day intercepted in the wild (CVE-
2022-41073)



  

how it started?

● The exploit used a manifest file to get execution

● The exploitation was done from Medium 
Integrity Level

● The exploit remapped the ’C:’ drive (what???)



  

Remapping ‘C:’ drive



  

Remapping C: drive

● It consists on changing the base directory of ‘C:’

● It can be done by using a symbolic link

● E.g: “c:” → “c:\users\public” 

– New “system32”: “c:\windows\system32” → “c:\users\
public\windows\system32”



  

Remapping C: drive

● The function to do that is “DefineDosDevice”

● It can remap almost any drive from Medium IL

● Except the ones that were previously mapped...



  

Remapping C: drive

● A low level function exists which allows that

● The NtCreateSymbolicLinkObject function

● It was used by the exploit in the wild!



  

Remapping C: drive

● It only affects the current user

● Services which impersonate the current user 
are affected

● The Windows kernel is affected in some 
syscalls



  

Bug found



  

Report to MSRC

● It was reported to Microsoft on August 25th

● MSRC Case 81895

● Still unfixed (0-day)...



  

Error found



  

At the beginning...



  

Type of bug

● It’s a DLL hijacking bug

● It allows us to inject DLL’s in some privileged 
processes

● The user loader is affected



  

Bug benefits

● Used to escalate privileges (aka EoP) from 
Medium IL

● Get code execution in High integrity level (or 
kind of)

● Deterministic exploitation (always works)



  

Bug requirements

● The affected executables have an embedded 
manifest

● Tags required: level="asInvoker" + uiAccess="true"

● ”<autoElevate>” tag is not required



  

Embedded manifest example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<assemblyIdentity
    version="5.1.0.0"
    processorArchitecture="amd64"
    name="Test"
    type="win32"
/>

<description>Test description</description>

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
  <security>
        <requestedPrivileges>
            <requestedExecutionLevel
                level="asInvoker"
                uiAccess="true"
            />
        </requestedPrivileges>
    </security>
</trustInfo>
</assembly>



  

Vulnerable versions

● Vulnerable Windows versions:
- Windows 11 (23H2 - release 25977 – Canary Channel)

- Windows 11 (22H2 and previous)

- Windows 10 (22H2 and previous)

- Windows Servers (not tested, probably vulnerable)

- Windows 8.1 (not tested, probably vulnerable)

- Windows 7 (vulnerable)



  

Vulnerable program list

● Some programs on “Windows 11” 22H2:
- ctfmon.exe, EaseOfAccessDialog.exe

- EoAExperiences.exe, Magnify.exe

- Narrator.exe, osk.exe

- psr.exe, rdpinput.exe

- rdpshell.exe, VoiceAccess.exe

- msra.exe (it has “AutoElevate” tag)



  

Root cause

● Process groups and privileges are identical to 
regular processes (affected by remapping)

● Only Mandatory Label is different (High)

● Searchable DLLs are only affected



  

Loader path

● Loader module path:

→ ...
  → ntdll!LdrpInitializeProcess

    → ntdll!LdrpDrainWorkQueue

      → ntdll!LdrpProcessWork

        → ntdll!LdrpMapDllSearchPath

          → ntdll!LdrpMapDllNtFileName



  

Real life attack scenario

2.sandbox escape 
exploit

(Low to Medium)

3.user/kernel exp
(Medium to High)

1.remote exploit
(Chrome sbx)

Admin/SYSTEM



  

Exploitation
“part 1”



  

Exploitation – part 1

● Target process: “ctfmon.exe”

● Only a DLL is required ("MsCtfMonitor.dll")

● Only one exported function is required 
("DoMsCtfMonitor")



  

Exploitation – part 1

● Create fake directory ”.\windows\system32”

● Copy fake "MsCtfMonitor.dll" there

● Hooks “ShellExecute” function to intercept the 
process creation



  

Exploitation – part 1 - steps

● Execute “ctfmon.exe” via “ShellExecute”

● Remap “C:” in the hook (change the system 
directory when process is still suspended) 

● Resume the process creation

● Code execution is achieved!



  

Demo 1



  

Exploitation
“part 2 – the chain”



  

Exploitation – part 2

● ”””HIGH””” IL has been obtained

● The process still have restrictions (not real 
“Admin” privileges)

● It’s necessary to chain the attack to get full 
privileges



  

Exploitation – part 2

● The pwned process token has 
SECURITY_MANDATORY_HIGH_RID (0x3000) 

● This privilege could be useful to elevate

● A possible attack vector is to register an ACTX 
for a EXE/DLL (aka cache poisoning!)



  

Exploitation – part 2

● At some patch level of “Win11” 22H2, an IL check 
was added for ACTX registering 

● It was after a 0-day in the wild (CVEs mentioned 
on the ZDI blogpost – “Activation Context Cache 
Poisoning – CSRSS ...”)

● Elevated processes only use now ACTXs 
registered with the same IL 



  

Exploitation – part 2

-sxssrv!BaseSrvSxsCreateActivationContextFromStructEx

(new code)

b



  

Some RIDs

● SECURITY_MANDATORY_LOW (0x1000)
– Sandboxed processes (e.g: “Chrome” renderer)

● SECURITY_MANDATORY_MEDIUM (0x2000)
– Most programs (e.g: “notepad.exe”, “cmd.exe”, etc)



  

Some RIDs

● SECURITY_MANDATORY_HIGH (0x3000)
– “Run as Administrator”, some privileged programs

● SECURITY_MANDATORY_SYSTEM (0x4000)
– Services



  

Cache poisoning scenarios

● E.g 1: if “chrome.exe” (renderer) registers an 
ACTX for “notepad.exe”, it won’t be used 
(0x1000 vs 0x2000)

● E.g 2: if “notepad.exe” registers an ACTX for 
“calc.exe”, it’ll be used (0x2000 vs 0x2000)



  

Cache poisoning scenarios

● E.g 3: if “notepad.exe” registers an ACTX for 
“tcmsetup.exe”, it won’t be used (0x2000 vs 
0x3000)

● E.g 4: if “ctfmon.exe” registers an ACTX for 
“tcmsetup.exe”, it’ll be used (0x3000 vs 0x3000)



  

Exploitation – part 2

● Target process: “tcmsetup.exe” (‘Telephony 
Client Setup Help’)

● Run as real High IL (Administrator)

● Easy to get SYSTEM privileges from it (usually 
obtained by kernel exploits)



  

Exploitation – part 2

● Target DLL: “tapi32.dll” (register an ACTX)

● This DLL has an embedded manifest

● DLL hijacked: “imm32.dll” (where code 
execution is achieved)



  

Steps

● A real “windows\system32” subdirectory is 
required (for registering the ACTX)

● E.g: “c:\windows\system32\tasks” (because it’s 
writable)

● Copy custom “tapi32.manifest” and fake 
“imm32.dll” there



  

TAPI32 manifest

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- Copyright (c) Microsoft Corporation →

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" 
manifestVersion="1.0">
<assemblyIdentity
    version="1.0.0.0"
    name="TAPI32"
    processorArchitecture="amd64"
    type="win32"
    language="tasks"
/>

<file name="imm32.dll"/>
</assembly>



  

Registering ACTXs

● The “CreateActCtx()” function is used to register 
ACTXs (better use low level ;-)) 

””””
ACTCTXA actx = {0};
actx.cbSize = sizeof (actx);
actx.lpSource = "test.manifest";

CreateActCtxA (&actx);
””””



  

Final steps

● Register the ACTX for “tapi32.dll” (from 
“ctfmon.exe”)

● Execute “tcmsetup.exe”

● “tcmsetup.exe” → “tapi32.dll” → “imm32.dll”

●  Code execution achieved!



  

Bug found



  

Demo 2



  

Bug limitations



  

Bug limitations

● If the current user is member of the 
“Administrators” group (the default one)
– SECURITY_MANDATORY_HIGH_RID (0x3000) is 

obtained

● If the current user is member of the “Users” 
group
– SECURITY_MANDATORY_MEDIUM_RID+  

(0x2010) is obtained



  

Conclusions



  

Conclusions

● All Windows versions are vulnerable!

● It could be thought of like a UAC bypass

● System drives shouldn’t be remapped from MIL



  

Thanks!
@NicoEconomou

h
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